Security and Protection

Prof. James L. Frankel Harvard University

Version of 7:33 PM 20-Nov-2018 Copyright © 2018, 2017, 2015 James L. Frankel. All rights reserved.

Security and Protection

- Confidentiality/Privacy
 - Keep secret data secret
- Integrity
 - Data can be modified only with permission
- Availability (Denial of Service attacks)
 - Systems must remain accessible and usable
- Authenticity
 - There should be evidence that the system and data are real
- Accountability
 - It should be possible to determine what was done to data or a system
- Non-repudiability
 - Proof of authenticity & integrity with high confidence
- Etc.

Intruders

- Casual prying by non-techies
- Snooping by insiders
- Determined attacks to make money
- Commercial & military espionage

Accidental Data Loss

- Acts of God
- HW & SW errors
- Human errors

Authentication (1 of 2)

- How break-ins occur?
- Don't indicate if the login name is incorrect
 - Can happen with an early error response (no such user)
 - Can happen with a message after login name and password
 - Can happen with a request to unlock an account with lost password
- Weak passwords by users
- Unreadable password file with clear text passwords in the password file
- Encrypted passwords
 - Always encrypt and store and compare the encrypted forms
- Use a "Salt" with each password
 - Salt is stored with the password in the file
 - Salt is concatenated with the password and then encrypted
 - Must be done with each possible password for each account
 - Each password is encrypted with different random data

Authentication (2 of 2)

- One time passwords
 - List of passwords
 - One-way Hash Chain (Leslie Lamport, 1981)
 - Function: y = f(x); Given x, easy to determine y, but not vice versa
 - Secret password: s; Number of passwords: n
 - If n = 4: Password₁ = f(f(f(s))); Password₂ = f(f(f(s))); Password₃ = f(f(s)); Password₄ = f(s)
- Challenge/response
- Physical object
 - SecurID
 - Chip in card (smart card)
- Biometrics
 - Fingerprints
 - Iris recognition
 - Face recognition
 - Signature analysis
 - Voice biometrics

Insiders

- Logic bombs
- Back doors
- Login spoofing
- Rootkits

Attacks

- Trojan Horses
 - Pretends to be useful software, but has a malicious purpose as well
- Viruses
 - Spread through distribution of a file
- Worms
 - Spread by themselves
- Spyware
 - Gathers information without a user's permission or knowledge

Exploiting Code Bugs

- Buffer overflow
 - Stack canaries
- Format string
- Dangling pointers (using memory after freeing it)
- Integer overflow
- Command injection
- Time-of-check to time-of-use attack (TOCTTOU)
 - Something changes between the time that a precondition is checked and the time at which an attack is made
 - That time difference allows the attack action to take place even though it should not be allowed

Gaining Privileged Access

- Gaining privileged access through the OS kernel
 - HW: CPU, memory pages, disk drives, printers
 - SW: processes, files, databases, semaphores
- Gaining privileged access through setuid root/setgid programs

Principle of Least Authority (POLA)

Need to Know

ACLs – Access Control Lists

- Principals have access to Objects
- Specific **rights** are granted
- Some ACLs can also deny certain rights in addition to granting them

- NTFS in Windows implements ACLs for file access
 - It has both granted and denied ACL rights

Capabilities

A list of objects and rights are associated with each process

Cryptography

- Secret-key (or symmetric-key) cryptography (examples are AES, RC4)
 - Usually it is fairly easy to determine the decryption key given the encryption key
 - Sometimes they are even the same
 - The shared keys for both encryption and decryption make this technique less desirable
- Public-key cryptography (Diffie-Hellman)
 - Different keys for encryption and decryption
 - Given one, it is virtually impossible to discover the other
 - Encryption key can be made public

Crypto Examples

- Q1: multiply $\pi \times \pi$
- Q2: determine the square root of π^2
- RSA uses multiplying and factoring hundreds of digits with modulo math
- One-way functions
- Crypto hashes
 - MD5 16 byte
 - SHA-1 20 byte
 - SHA-256 32 byte
 - SHA-512 64 byte

Bell-LaPadula Model – Enforces Secrecy

- Documents (objects) have a security level
- People (processes) also have a security level

- Process at security level k can read objects at its level or lower
- Process at security level k can write objects at it level or higher

- This guarantees that a process cannot leak data to lower levels
- This guarantees that a process cannot access data at higher levels

Biba Model – Enforces Integrity (just the opposite)

- Process at security level k can write objects at its level or lower
- Process at security level k can read objects at its level or higher

- This guarantees that a process cannot write data that would destroy the integrity of higher level documents
- This guarantees that a process will read data (i.e., be directed) by higher levels

Dilemma Between Maintaining Secrecy & Integrity

Difficult to maintain both secrecy and integrity

Covert Channels

- Steganography
 - Embed information in public, non-encrypted data
 - For example, embed a message in a large image file (JPEG, MPEG, GIF, etc.)